Artificial Intelligence – Hematology Laboratory

jim yakimec April, 2025

1

A complimentary accredited webinar: Using Telepathology to Advance Patient Care & Lab Workflow

Shortages in pathologists and lab staff are impacting support for intraoperative frozen section (IFS) consultation and rapid on-site evaluation (ROSE). Historically IFS and ROSE have required a pathologist's physical presence in the location where samples are being prepared. This webinar will examine how telepathology and whole slide imaging have advanced to a point where they can be used to convert support of IFS and ROSE from on-site to remote

The Anatomic & Clinical Pathology AI Platform

Techcyte Fusion-

The first unified digital pathology platform

<u>Techcyte Fusion</u> is the first truly unified anatomic and clinical pathology platform designed to streamline workflows, enhance collaboration, and integrate advanced AI tools—all in a single solution.

Presentation outline

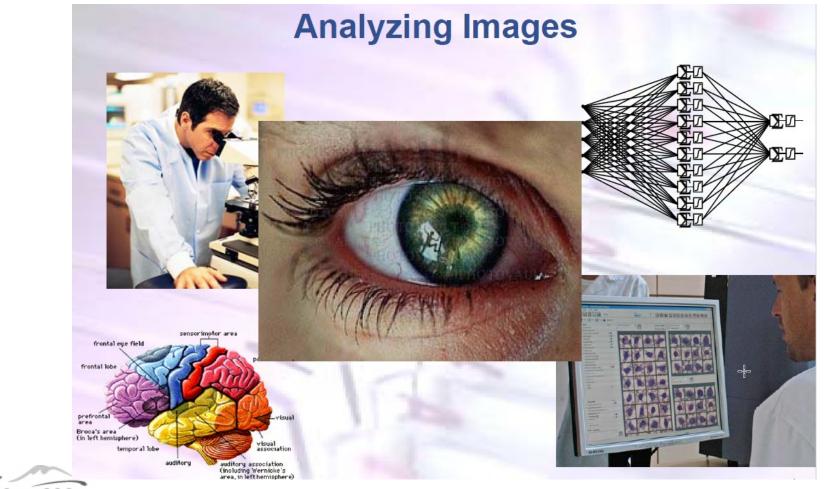
- Automated digital cell morphology
 - Brief history / timeline
 - Systems on the market
 - CellaVision focus
 - Benefits
- Immunofluorescence patterns AIM

automated digital cell morphology

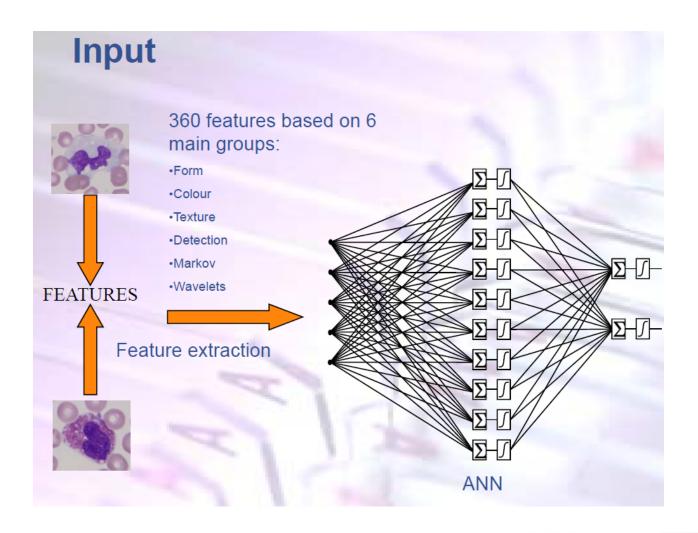
WBC, RBC and platelet pre-classifications operate as a decision support system (DSS), requiring the operator to review the pre-classified data generated by the system, approve, or correct it.

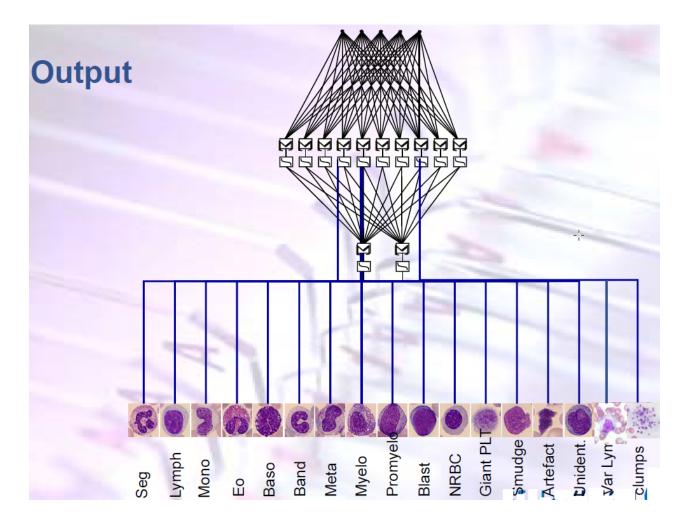
So far, DSS is the only mode cleared by the FDA for such analyzers.

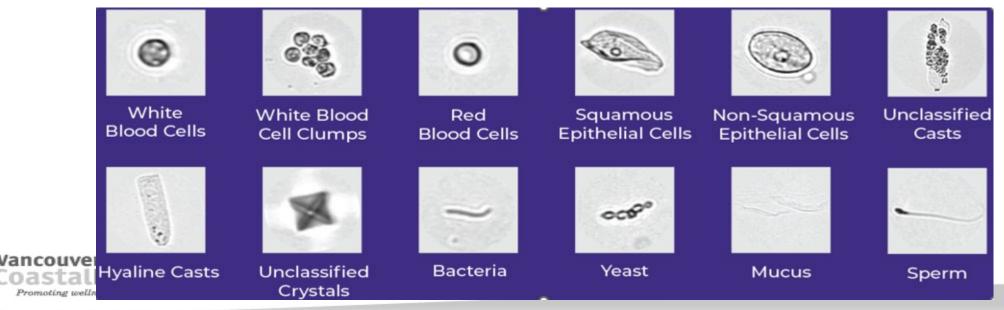
- Adaptive Monolayer Detection algorithm, designed to identify the clinically relevant area and adapt for optimal review
- No instrument learning


Goals for successful product and reasons driving implementation

- Improve efficiency in training MLT
 - Efficiency, proficiency, connectivity, ergonomics
- Real-time collaboration with Pathologist especially from remote facilities
 - Remove geographical constraints from smear review
- Declining availability of medical technologists
- Need for greater level of standardization and quality assurance
- Impact on Pathologist
 - Convenient access to pending slides for review
 - Easy image capture for use in applications
 - Remote access from home




Pattern recognition



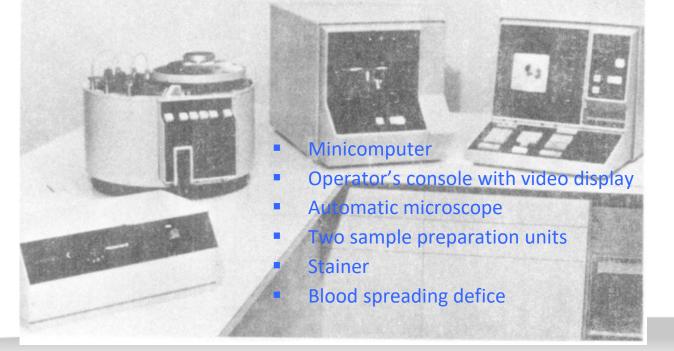
DxU Microscopy Series Urine Microscopy Analyzer

- reducing manual microscopic review rates to less than 3%.
- achieved using Digital Flow Morphology technology + APR Software to capture digital images.
- APR Software evaluates the size, shape, contrast and texture of the urine particles and evaluates each digital image to identify and classify the urine particles into one of 12 primary categories. The operator has the option to further subclassify particles into 27 additional categories.

Pre-requisite for successful ADCM

- Ease of use
- Interface ease
- Throughput
- Good pre-classification rates
- Slide stain quality

DIFF-Line (CellaVision):


a complete workflow for smearing, staining, and analyzing peripheral blood smears in hematology labs that handle a smaller amount of daily blood samples.

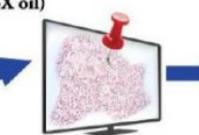
Brief history of digital morphology in Hematology

- Several attempts have been made to automate the identification of WBCs on a peripheral blood smear, dating back to the **1970s**. One of the first commercial image analyzers was the **LARC**[®] (Leukocyte Automatic Recognition Computer), manufactured by Corning Glass.
- The system required spun slides and could classify the five normal cell types. Abnormal cell types were placed in a separate category for manual review through the microscope oculars. The system used nine cell features and a decision tree for the cell classification.
- Tedious
- Time consuming
- Sensitive to subjective error
- Aim to improve quality of results

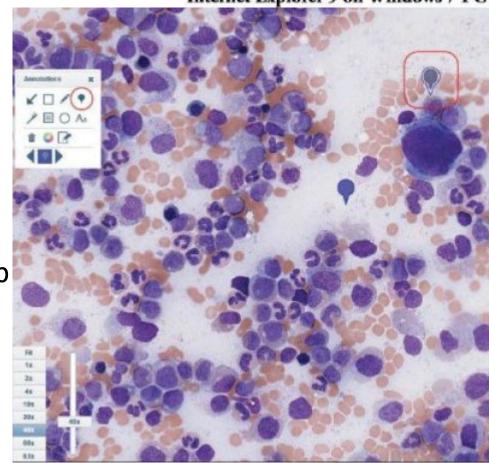
Brief history of digital morphology in Hematology

- Another analyzer, the diff3[®], was developed by Perkin Elmer. It required spun slides and could classify 10 cell classes and could be loaded with a 14-slide magazine.
- 1980s: Geometric Data Corp. Developed analyzer Hematrak[®]; used by more than 1000 laboratories at its height of popularity. Classification of the cells based on 100 extracted cell features

- In **1994**, CellaVision was founded in Sweden.
- In **2001**, CellaVision AB launched the **DiffMaster™ Octavia**.
 - modified standard microscope for high-speed movements
 - an automated 8-slide stage
 - a control box for illumination and stage movements
 - a high-speed CCD camera
 - software for pre-classifying white and red blood cells

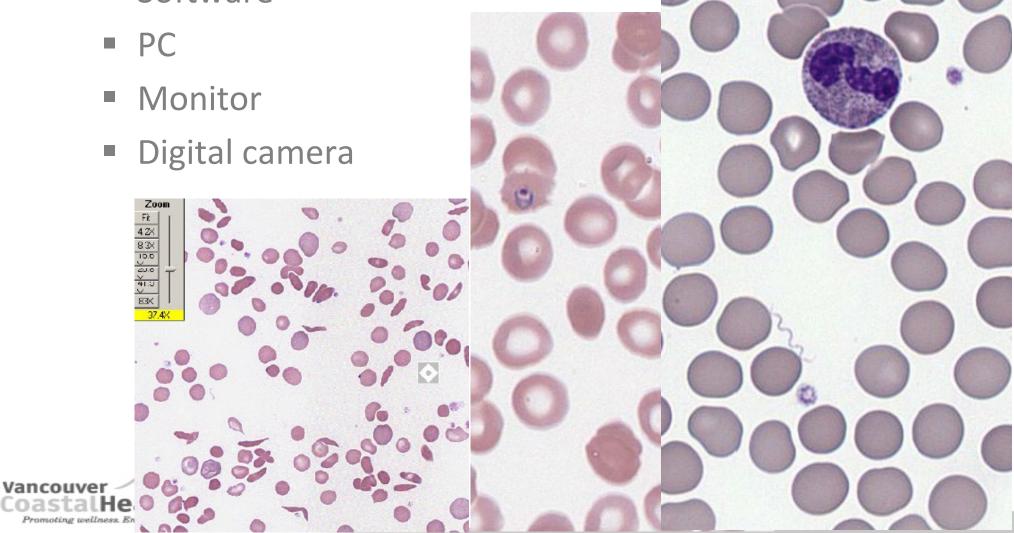


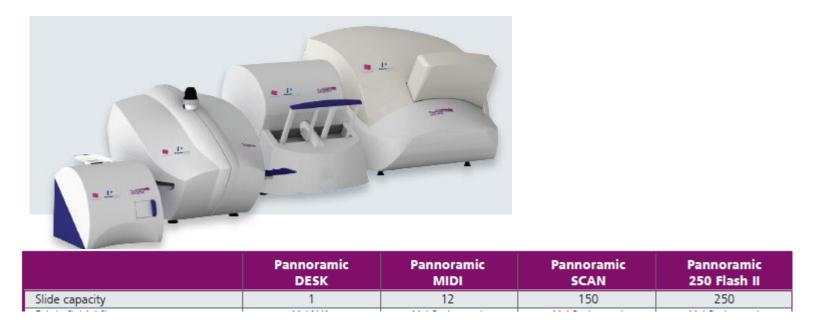
Aperio


Aperio ScanScope CS-O (83X oil) Aperio AT2 (20X)

Aperio eSlide Manager -> Internet Explorer 9 on Windows 7 PC

- Hi / lo power whole slide scanning
- High quality images
- No Al / preclassification
- Does not meet large lab throughput needs



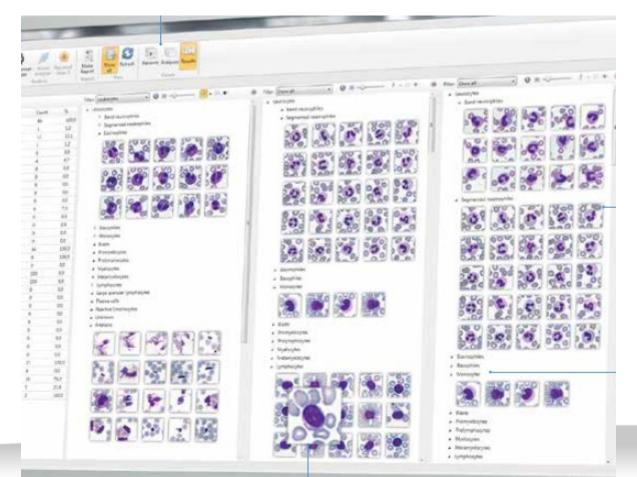

Panoptiq ViewsIQ

Software

Panoramic digital slide scanners

- High volume / auto loading
- No AI (pre-classification), LIS interface

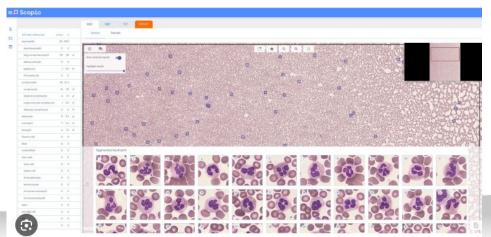
Vision Hema Pro


Slide tray loading

WEST MEDICA

Vision Hema Pro

- Autmoatic scanning
- ID and pre-classification of blood cells.
- Quick validation of results


Scopio Labs X100 Full Field PBS

Scopio Labs X100 Full Field PBS

- High resolution full field viewing of peripheral blood specimens combined with AI-based morphological analysis
- Current digital cell imaging systems perform peripheral blood smear (PBS) analysis in limited regions of the PBS and require the support of manual microscopy without achieving full digital microscopy.
- WBC pre-classification via AI to neutrophils, lymphs, mono, eos, baso, pro, meta, meylo, blast, variant lymph, plasma cells, NRBC, smudge (same as cellavision)
- On average, scan and pre-classification times were 4 minutes per slide, but were up to 7 minutes for long smears. Slower than cellavision

Brief history of digital morphology in VCH Hematology

- 2003: CellaVision DM96 VGH Oct 2007
 - 96 slide capacity, 8 magazines
- 2010: DM1200
 LGH 2010, RHS 2015
- 2014 DI-60

Integrated onto Sysmex cell counter line

CELLAVISION

...

CellaVision

360 features are calculated.

- Form
- Colour
- Texture (granules..)
- Detection (vacuoles..)
- Markov (probability functions)
- Wavelets
- Size
- Nuclear: cytoplasmic ratio...

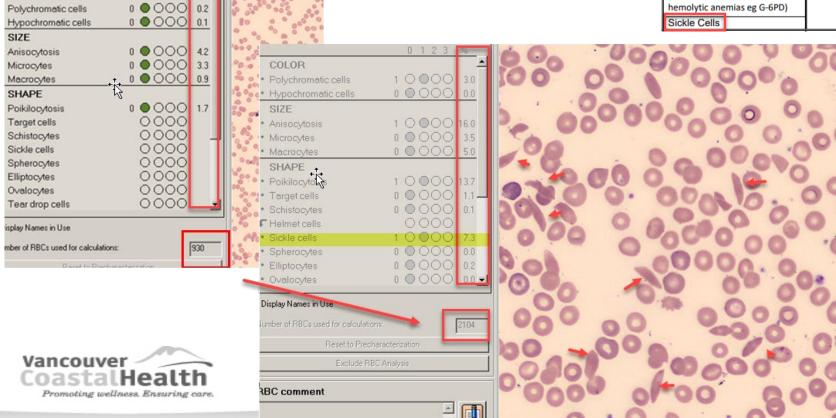
Artificial Neural Networks

 Not about pre-classification accuracy but about providing tools to improve the speed and accuracy of the MLT

WBC pre-classification accuracy

Pre-classification data absolute			
Cell-class	n1	n2	n3
Segmented neutrophil	3437	3436	3623
Eosinophil	182	182	186
Basophil	57	55	56
Lymphocyte	1306	1277	1414
Monocyte	452	423	429
Band neutrophil	185	0	0
Var Ly	62	3	3
Plasma	0	0	0
Promyelocyte	7	5	5
Myelocyte	45	42	43
Metamyelocyte	50	48	49
Blast cell	390	342	424
Smudge cell	77	77	77
Erythroblast (NRBC)	79.8	79.8	93.8
Artefact	14	0	4
Giant thrombocyte	0	0	0

Pre-classification data relative		
	Pre-classifying	In agreement with
Cell-class	agreement	final result
Segmented neutrophil	100.0%	94.8%
Eosinophil	100.0%	97.8%
Basophil	96.5%	98.2%
Lymphocyte	97.8%	90.3%
Monocyte	93.6%	98.6%
Var Ly	4.8%	100.0%
Promyelocyte	71.4%	100.0%
Myelocyte	93.3%	97.7%
Metamyelocyte	96.0%	98.0%
Blast cell	87.7%	80.7%
Smudge cell	100.0%	100.0%
Erythroblast (NRBC)	100.0%	85.1%
Artefact	0.0%	0.0%
	Pre-classifying agreement	In agreement with final result
SN, Ly, Mo	98.9%	94.0%
SN, Ly, Mo, Bas, Band, Eos	95.6%	94.1%


Advanced RBC Software - CellaVision

- ~ 2500 RBC vs ~ 900
- 'persistent' zooming
- Improved scan area

0 1 2 3 %

COLOR

Parameter	Report as		Pathologist referral Criteria (First Time Only)	Critical Value Requires immediate pathologist consultation & phoning to the ordering physician or ward
Bite Cells Blister Cells Schistocytes [includes Helmet cells) do NOT report in absence of thrombocytopenia / dropping platelets Spherocytes	2% - 20% of RBC's affected: Present	> 20% of RBC's affected: Many	Refer > 2% fragmentation with thrombocytopenia and anemia	Severe anemia (HB <75 g/L) with spherocytes, polychromasia. Schistocytes and ↓ PLT (<100) or falling platelet
Irregularly contracted RBCs (intended for oxidative stress hemolytic anemias eg G-6PD) Sickle Cells			Refer any Sickle Cells not previously referred (confirmed)	count +/- polychromasia Sickle cells – 1 st time

MAHA (micro angiopathic hemolytic anemia)

Critical Value Pathologist referral Requires immediate Parameter Report as Criteria pathologist consultation & (First Time Only) phoning to the ordering physician or ward Bite Cells Refer > 2% > 20% of 2% - 20% Blister Cells Severe anemia fragmentation with of RBC's RBC's (HB <75 g/L) with Schistocytes thrombocytopenia and affected: affected: spherocytes, (includes Helmet cells) anemia polychromasia. do NOT report in absence of Present Many thrombocytopenia / Schistocytes and ↓ PLT (<100) or C Use characterization falling platelet 0 1 2 3 % count +/-1 0 000 13.6 Macrocytes polychromasia O SHAPE er any Sickle Cells Sickle cells - 1st 1 0 000 20.5 · Poikilocytosis previously referred time 0 000 0.2 Target cells firmed) 3 0 0 0 0 7.5 · Schistocytes 0 000 0.5 · Helmet cells 0 000 0.3 · Sickle cells 10000 · Spherocytes 0 000 0.1 · Elliptocytes · Ovalocytes 0 000 1.2 · Tear drop cells 10000 1.9 0 000 4.2 Stomatocytes Acanthocytes 0 000 1.9 0 000 2.4 · Burr cells INCLUSIONS 0 000 0.2 -1 · Howell-Jolly * Display Names in Use 1188 **RBC** comment

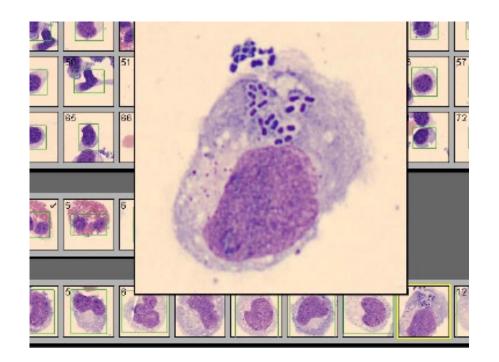
3050 Peripheral Blood Film Handling and Reporting

C		C Overview	Individual Cells	
Report all as 0 - normal Use characterization		Target cells (283)		Show Example Cells 👻
036 Chardelencolor		0000000	000000000000000	000000000000000000000000000000000000000
	0 1 2 3 %			0000000000000000000
COLOR	E			000000000000000000000000000000000000000
Polychromatic cells	1 0 0 0 3.2			
Hypochromatic cells	0 • 0 0 0 3.9			
SIZE				000000000000000000000000000000000000000
Anisocytosis	3 0 0 0 25.2	0000000		000000000000000000000000000000000000000
Microcytes	1 0 000 10.6			000000000000000000
Macrocytes	1 0 000 19.2			00000000000000000000
SHAPE				0
 Poikilocytosis 	2 0 0 0 39.2	00		
 Target cells 	2 0 0 0 22.9	O history (d)		
Schistocytes	0 000 0.3	Schistocytes (4)		Show Example Cells 🔻
F Helmet cells	0000	0000		
Sickle cells	0 000 3.2	Sickle cells (39)		Show Example Cells 👻
Spherocytes	0 000 0.0	and the second se		
Elliptocytes	0 000 0.2	1111	111111220111110	1100000000000000
Ovalocytes	0.0 000 0.0 -			
* Display Names in Use		Elliptocytes (3)		Show Example Cells 🔻
		000		
Number of RBCs used for calculations:	1235	Tear drap calls (10)		Chave Everyole Calls
Reset to Prechara	cterization	Tear drop cells (19)		Show Example Cells 👻
Exclude RBC A	nalysis	0000000	096496600000	
		Stomatocytes (99)		Show Example Cells 👻
RBC comment		00000000	000000000000000000000000000000000000000	@DECEPSOSSESSESSES
	- (0000000	000000000000000	
4				

Brief history of digital morphology in VCH Hematology

2019: CellaVision DC-1

270



Body Fluid software

- 10 User-defined body fluid WBC classes
- 5 User-defined body fluid non-WBC classes
- CellaVision pre-classifies:
 - Neutrophils
 - Lymphocytes
 - Eosinophils
 - Macrophage
 - Other
 - Smudge cells
 - Artefact
 - Unidentified

Cellavision

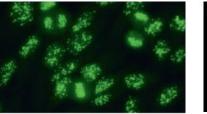
Future applications – no momentum

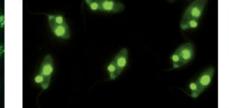
- Malaria
 - Less compelling in age of NAT / PCR
- Bone marrow neural network
 - Inconsistent thickness of films
 - dysplasia

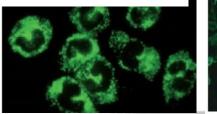
Inherent bias in people, no inherent bias in ANN

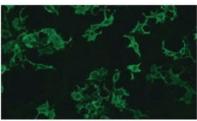
^{ae:} ↓ † ≣		
Sign Slide		
18 18.0 🗖 🗸	Plasma cell V	
Count %		
	1 2 3 4 5 8 7	
2 2.0 🗖 🗸		
3 3.0 🗖 🗸		
63 63.0 🗖 🗸		
1 1.0 🗖 🗸		
5 5.0 🗖 🗸		_
2 20 🗖 /		
24 24.0 🗖 🗸		
100 100		
Count Ratio 2 2.0 • 		
27 27.0		
	Sign Slide 18 18.0 ↓ Count % 2 2.0 ↓ 3 3.0 ↓ 63 63.0 ↓ 1 1.0 ↓ 1 1.0 ↓ 2 2.0 ↓ 2 2.0 ↓ 2 2.0 ↓ 1 1.0 ↓ 3 3.0 ↓ 4 4.0 ↓ 1 1.0 ↓ 2 2.0 ↓ 1 1.0 ↓ 2 2.0 ↓ 3 4.0 ↓ 3 4.	SynSide 18 18.0 - / 2 2.0 - / 3 3.0 - / 6 3 63.0 - / 1 10 - / 5 5.0 - / 2 4 24.0 - / 10 100 Count Ratio 2 2.0 - /

Immunofluorescence Patterns – AIF




- Automated IIFT pattern recognition and calculation of the antibody titer based on deep learning/deep convolutional neural networks
- Security and traceability thanks to automated identification of slides by means of matrix codes


Performance analysis of automated evaluation of antinuclear antibody indirect immunofluorescent tests in a routine setting


concordance of 99.3% was observed within the range of 1 titer step difference between EPa and observer. Conclusions The ANA IIF results reported by the EPa software are in very good agreement with the results reported by the observer with respect to being negative/positive, pattern recognition and titer, making automated ANA IIF evaluation an objective and time-efficient tool for routine testing.

